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Abstract— We investigate two quantities of interest in a delay tolerant mobile ad hoc network: the network capacity region and the 

minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support 

considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function 

establishes the minimum time average power required to support it. In this work, we consider a cell-partitioned model of a delay-tolerant 

mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless 

transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy 

function. Further, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an 

increased delay. 

Index Terms— Capacity region, Delay tolerant networks, Minimum energy scheduling, Mobile ad-hoc network and Queueing analysis. 

——————————      ——————————

1 INTRODUCTION                                                                    

WO quantities that characterize the performance limits of 
a mobile ad hoc network are the network capacity region 
and the minimum energy function. The network capacity 

region is defined as the set of all input rates that the network 
can stably support considering all possible scheduling and 
routing algorithms that conform to the given network 
structure. The minimum energy function is defined as the 
minimum time average power (summed over all users) 
required to stably support a given input rate vector in this 
region. Here, by stability we mean that the input rates are 
such that for all users, the queues do not grow to infinity and 
average delays are bounded. In this paper, we exactly 
compute these quantities for a specific model of a delay-
tolerant mobile ad hoc network. 

Asymptotic bounds on the capacity of static wireless 
networks and mobile networks are developed [2], [3]. The work 
in reference [3] shows that for networks with full uniform 
mobility, if delay constraints are relaxed, a simple 2-hop relay 
algorithm can support throughput that does not vanish as the 
number of network nodes N grows large. Recent work in [4] 
generalizes this model and investigates capacity scaling with 
non-uniform node mobility and heterogeneous nodes. 
Capacity-delay tradeoffs in mobile ad hoc networks are 
considered in [8] - [12]. Flow-based characterization of the 
network capacity region is presented in several works (e.g., [7], 
[13], [14]). 

However, little work has been done in computing the exact 
capacity and energy expressions for these networks. Exceptions 
include a closed form expression for the capacity of a fixed grid 
network in [5], an expression for the exact information theoretic 
capacity for a single source multicast setting in a wireless 
erasure network [6], and an expression for the capacity of a 
mobile ad hoc network in [8] that uses a cell-partitioned 
structure. The work [8] quantizes the network geography into a 
finite number of cells over which users move, and assumes that 
a single packet can be transmitted between users who are 
currently in the same cell, while no transmission is possible 
between users currently in different cells. 

In this work, we extend this model to more general scenarios 
allowing adjacent cell communication and different rate power 
combinations. Specifically, we extend the simplified cell-
partitioned model of [8] (which only allows same cell 
communication and considers i.i.d. mobility) to treat adjacent 
cell communication. We establish exact capacity expressions for 
general Markovian user mobility processes (possibly non-
uniform), assuming only a well-defined steady state location 
distribution for the users. Our analysis shows that, similar to 
[8], the capacity is only a function of the steady state location 
distribution of the nodes and a 2-hop relay algorithm is 
throughput optimal for this extended model as well. Further, 
our analysis illuminates the optimal decision strategies and 
precisely defines the throughput optimal control law for 
choosing between same cell and adjacent cell communication. 
We then use this insight to design a simple 2-hop relay 
algorithm that can stabilize the network for all input rates 
within the network capacity region. We also compute an upper 
bound on the average delay under this algorithm. 

We next compute the exact expression for the minimum 
energy required to stabilize this network, for all input rates 
within capacity. Our result demonstrates a piecewise linear 
structure for the minimum energy function that corresponds to 
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opportunistically using up successive transmission modes. 
Then we present a greedy algorithm whose average energy can 
be pushed arbitrarily close to the minimum energy at the cost of 
an increased delay. 

Before proceeding further, we emphasize that the network 
capacity and minimum energy function derived in this paper 
are subject to the scheduling and routing constraints of our 
model as described in the next section. Specifically, in this 
work, we do not consider techniques that “mix” packets, such 
as network coding or cooperative communication, which can 
increase the network capacity and reduce energy costs. In fact, 
in Section of “Capacity gaining by network coding”, we present 
an example scenario that shows how network coding in 
conjunction with the wireless broadcast advantage can increase 
the capacity for this model. Calculating the network capacity 
region and the minimum energy function when these strategies 
are allowed is an open problem in general in network 
information theory and is beyond the scope of this paper. 

2 NETWORK MODEL 

2.1 Cell-Partitioned Structure 

We use a cell-partitioned network model (Fig. 1) having ‘C’ 
non-overlapping cells (not necessarily of the same size/shape). 
There are ‘N’ users roaming from cell to cell over the network 
according to a mobility process. Each cell c ∈ {1, 2, … . , C} has a 
set of adjacent cells ‘B ’ that a user can move into from cell c. 
The maximum number of adjacent cells of any cell is bounded 
by a finite constant J. We define the network user density as 
θ = N/C users/cell. For simplicity, ‘N’ is assumed to be even 
and N ≥  2. Note that there could be “gaps” in the cell structure 
due to infeasible geographic locations. We assume that the gaps 
do not partition the network, so that it is possible for a single 
user to visit all cells. We assume ‘C’ is the number of valid cells, 
not including such gaps. 

R1

R1

R1

R2

R2

R2

R2

 

Fig. 1. An illustration of the cell-partitioned network with same and 
adjacent cell communication. Cells that share an edge are assumed to be 
adjacent. 

2.2 Mobility Model 

Time is slotted so that each user remains in its current cell for 
a timeslot and potentially moves to an adjacent cell at the end of 
the slot. We assume that, each user i moves independently of 
the other users according to a mobility process that is described 

by a finite state ergodic Markov Chain. In particular, let 
 P = {P  }    be the transition probability matrix of this Markov 

Chain. Then P   represents a conditional probability that, user 

moves to cell j in the current slot given that it was in cell i in the 
last slot. Note that P  > 0 only if j is an adjacent cell of i, i.e., j ∈

 Bi. It can be shown that the resulting mobility process has a 
well-defined steady state location distribution π = {π }    over 
the cells c ∈ {1, 2,… . , C} that satisfies πP = π and is the same for 
all users. However, this distribution could be non-uniform over 
the cells. We assume that in each slot, users are aware of the set 
of other users in the same cell and in adjacent cells. However, 
the transition probabilities associated with the Markov Chain P 
are not necessarily known. 

It can be shown (see, for example, [18]) that the mobility 
process discussed above has the following property. Let 
χ(t) ∈ {1, 2,… . , C} denote the location of a user in timeslot t. 
Then, for all integers  d >  0, there exist positive constants α, γ 
such that ∀ ∈ {1, 2,… . , C}, the following holds: 

  (1     )    [ (   ) =  | ( )] 

   (1     )                             (1)  

where  α >  1 and 0 <  γ <  1. Moreover, the decay factor γ is 
given by the second largest eigenvalue of the transition 
probability matrix P (see [17]). From this, it can be seen that for 

any    ϵ >  0, choosing  d = [
     ( / )

    ( )
] ensures that the 

conditional probability that the user is in cell ‘c’ at time t + d is 
within π ϵ of the steady state probability π  of being in cell c, 
irrespective of the current location. This implies that the 
Markov Chain converges to its steady state probability 
distribution exponentially fast. Using the independence of user 
mobility processes, the following can be shown about 
functional of the joint user location process χ⃗ (t). 

Lemma 1. Let   ( ) = (  ( ), … . ,   ( )) be the vector of current 
user locations, where   ( ) represents the cell of user i in slot t. 
Let 𝑓(  ( )) be any non-negative function 

of   ( ), 𝑖. 𝑒. , 𝑓(   ( )) ≥ 0 ∀    ( ). By defining 𝑓    as the 

expectation of 𝑓(   ( )) over the steady state distribution 
of    ( ): 

𝑓   ∑ 𝑓(  ,   , … . ,   )

  ,  ,….,  

∏   

 

   

 

Then for all d such that     
 

  , we have: 

𝑓  (1  2    )   {𝑓(  (   ))|  ( )}

 𝑓  (1  2    ) 

2.3 Traffic Model 

We assume that there are N unicast sessions in the network 
with each node being the source of one session and the 
destination of another session. Packets are assumed to arrive at 
the source of each session i according to an i.i.d. arrival process 
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A (t) of rate λ . We assume that in any slot, the maximum 
number of arrivals to any session i is bounded  i. e. , A_i (t)  

A_max. While our analysis holds for the general source-
destination pairing, for simplicity, we assume that N is even 
with the following one-to-one pairing between users: 1 →
 2;  3 →  4,… . , (N   1)  ↔  N, i.e., packets generated by user 1 
are destined for user 2 and those generated by user 2 are 
destined for user 1 and so on. This assumption simplifies the 
computation of the capacity in closed form in Theorem 1 and 
will be used for the rest of the paper. 

2.4 Communication Model 

We assume that two users can communicate only if they are 
in the same cell or in adjacent cells. Further, if the 
communication takes place in the same cell, R1 packets can be 
transmitted from the sender to the receiver if the sender uses 
full power. If the receiver is in an adjacent cell, R2 packets can 
be transmitted with full power. We assume that R1 and R2 are 
non-negative integers and that R ≥ R . Power allocation is 
restricted to the set {0, 1}, i.e., each user either uses zero power 
or full power. We allow at most one transmitter in a cell at any 
given timeslot, though the cell may have multiple receivers 
(due to possible adjacent cell communication). Further, a user 
may potentially transmit and receive simultaneously. This 
model is conceivable if the users in neighboring cells use 
orthogonal communication channels. This model allows us to 
treat scheduling decisions in each cell independently of all 
other cells, thereby enabling us to derive closed form 
expressions for capacity and minimum energy. 

2.5 Discussion of Model 

While an idealization, the cell-partitioned model captures the 
essential features of locality of wireless transmissions as well as 
node mobility and allows us to compute exact expressions for 
the network capacity and minimum energy function. This 
model is reasonable when nodes use noninterfering orthogonal 
channels in adjacent cells. 

In this work, we restrict our attention to network control 
algorithms that operate according to the network structure 
described above. A general algorithm within this class will 
make scheduling decisions about what packet to transmit, 
when, and to whom. For example, it may decide to transmit to 
a user in an adjacent cell rather than to some user in the same 
cell, even though the transmission rate is smaller. However, we 
assume that the packets themselves are kept intact and are not 
“mixed” (for example, using cooperative communication 
and/or network coding). Allowing such strategies can increase 
the capacity, although computing the exact capacity region 
remains a challenging open problem in general. In Section of 
“Capacity gaining by network coding”, we present an example 
that shows how network coding in conjunction with the 
wireless broadcast advantage can increase the capacity for this 
model. However, we note that if we remove the broadcast 
feature, then the scenario considered in this paper becomes a 
network coding problem for multiple unicasts over an 
undirected graph, for which it is not yet known if network 
coding provides any gains over plain routing (see further 

discussion in [16]). 

3 NETWORK CAPACITY 

In this section, we compute the exact capacity of the network 
model described in the previous section. For simplicity, we 
assume that all users receive packets at the same rate (i.e., λ = λ 
for all i). The capacity of the network is then described by a 
scalar quantity which denotes the maximum rate λ that the 
network can stably support. Recall that network user density 
θ = N/C users/cell. Then we have: 

Theorem 1. The capacity of the network (in packets/slot) is given by: 

 = {

                 

2 
                    𝑖𝑓    ≥ 2  

2    2              ( 
    )

2 
       𝑖𝑓 2  >   ≥   

 

where 

 =
 

 
∑    

    [Finding a source-destination pair in cell ‘c’ in a 

timeslot] 

 =
 

 
∑    

    [Finding at least 2 users in cell ‘c’ in a timeslot] 

  =
 

 
∑    

    [Finding exactly 1 user in cell ‘c’ and its 

destination in an adjacent cell in a timeslot] 

  =
 

 
∑    

    [Finding exactly 1 user in cell ‘c’ and at least 1 

user in an adjacent cell in a timeslot] 

   =
 

 
∑    

    [Finding no source-destination pair in cell ‘c’ 

but at least 1 source-destination pair with an adjacent cell in a 
timeslot] 

   =
 

 
∑    

    [Finding no source-destination pair in cell ‘c’ 

and any adjacent cell but at least 2 users in the cell ‘c’ in a 
timeslot] 

The probabilities in the summations above are the 
probabilities associated with the steady state cell location 
distributions of the users. Using the independence of user 
mobility processes and the same steady state cell location 
distribution π = {π }    for all users, we can exactly compute 
these probabilities for our model. These are given by: 

 =
1
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1

 
∑(1  (1    )

     (1    )
   )

 

   

 

  =
1

 
∑(    ( )   (1    )

   )

 

   

 

  =
1

 
∑(1  (1      ( ))

   )   (1    )
   

 

   

 

   =
1

 
∑∑2 (

 

2
𝑖
)

 
 

   

 

   

  
 (1    )

   (1  (1      ( ))
 ) 

   =
1

 
∑∑2 (

 

2
𝑖
)

 
 

   

 

   

  
 (1    )

   (1      ( ))
              (2) 



International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012                                                                                         4 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

Here,     (c) denotes the sum of the conditional steady state 

probability of a user being in any adjacent cell of cell c given 
that this user is not in cell c, i.e., 

    ( ) =
 

    
∑    ∈  

. 

Thus, the network can stably support users simultaneously 
communicating at any rate λ <  μ. We prove the theorem in 
two parts. First, we establish the necessary condition by 
deriving an upper bound on the capacity of any stabilizing 
algorithm. Then, we establish sufficiency by presenting a 
specific scheduling strategy and showing that the average delay 
is bounded under that strategy. 

3.1 Proof of Necessity 

Let Ψ be the set of all stabilizing scheduling policies. 
Consider any particular policy ψ ∈ Ψ. Suppose it successfully 

delivers X  
 
 (T) packets from sources to destinations involving 

“a” same cell transmissions and “b” adjacent cell transmissions 

in the interval (0, T). Fix ∊ > 0. For stability, there must be exist 
arbitrarily large values of ‘T’ such that the total output rate is 
within _ of total input rate. Thus: 

∑ ∑    
 ( ) 

   
 
   

 
≥                              (3) 

Let Y  (T) as the total number of packet transmissions in (0, T) 

under policy ψ. Then, Y  (T) is at least  ∑ ∑ (a  b)X  
 (T) 

   
 
    

(because these many packets were certainly delivered). Thus, 
we have: 

1

 
    ( ) ≥

1

 
∑ ∑(   )   

 ( )

 

   

 

   

 

≥
1

 
∑    

 ( )

     

 
2

 
∑    

 ( )

     

 

≥
1

 
∑    

 ( )

     

 2(    )  
2

 
∑    

 ( )

     

 

where, the last inequality is obtained using (3). Hence, noting 
that ϵ can be chosen to be arbitrarily small, we have: 

   im
 → 

  ( )     
 ( )     

 ( )

2  
                     (4) 

By defining, Y 
 (τ) as the total number of packet 

transmissions in cell ‘c’ at timeslot ′τ′ under policy ψ. Also by 

defining  X  , 
 (τ) and  X  , 

 (τ) as the number of packets 

delivered by same cell direct and adjacent cell direct 
transmission respectively in cell ‘c’ at timeslot ′τ′. Then 

Y (T)  X  
 (T)  X  

 (T) can be written as a sum over all 

timeslots τ ∈ (0, T) and all cells ‘c’ as follows: 

  ( )     
 ( )     

 ( ) 

= ∑ ∑(  
 ( )     , 

 ( )     , 
 ( ))

 

   

   

   

 

= ∑ ∑max
   

( ̂ 
 ( )   ̂  , 

 ( )   ̂  , 
 ( ))

 

   

   

   

           ( ) 

where Ŷ 
 (τ) denotes the total number of packet transmission 

opportunities in cell ‘c’ at timeslot τ under any policy ψ. 

Similarly, X̂  , 
 (τ) and X̂  , 

 (τ) denote the total number of 

packet transmission opportunities that use same cell direct and 
adjacent cell direct transmissions respectively in cell ‘c’ at 
timeslot τ . Note that these do not depend on the queue 
backlogs and therefore can be different from the actual number 
of packet transmissions (for example, when enough packets are 
not available). 

Let Ẑ 
 (τ) = Ŷ 

 (τ)  X̂  , 
 (τ)  X̂  , 

 (τ). Also, by defining the 

following indicator decision variables for any policy ω for some 
 c ∈  (0, T) and c ∈ {1,2,3, … . , C}: 

  
 ( ) = {

1 → i  a  ma   ce   direct tran mi  ion can
be  c edu ed in ce   ′c′ in   ot ′τ′ 

0 → e  e                                                                
  

  
 ( ) = {

1 → i  a  ma   ce   re a  tran mi  ion can

 be  c edu ed in ce   ′c′ in   ot ′τ′ 
0 → e  e                                                              

 

  
 ( ) = {

1 →  i  a adjacent ce   direct tran mi  ion can

be  c edu ed in ce   ′c′ in   ot ′τ′      
0 →  e  e                                                                      

 

  
 ( ) = {

1 →  i  a adjacent ce   re a  tran mi  ion can

be  c edu ed in ce   ′c′ in   ot ′τ′     
0 →  e  e                                                                    

 

Note that the transmission rates associated with these decision 
variables are R1, R1, R2 and R2 respectively. Then, we can 

express  Ẑ 
 (τ) as follows: 

  ̂ 
 ( ) =  ̂ 

 ( )   ̂  , 
 ( )   ̂  , 

 ( ) 

=      
 ( )      

 ( )       
 ( )       

 ( ) 

  ̂  , 
 ( )   ̂  , 

 ( ) 

=      
 ( )      

 ( )       
 ( )       

 ( ) 

      
 ( )       

 ( ) 

=  2    
 ( )      

 ( )   2    
 ( )       

 ( ) 

Note that under any scheduling policy, only one of the decision 
variables can be ‘1’ and the rest are ‘0’. Thus, the preference 

order for decisions to maximize  Ẑ 
 (τ) is evident. Specifically, it 

would be  I 
 (τ) > I 

 (τ) >  I 
 (τ) > I 

 (τ) when R ≥ 2R  and 
 I 
 (τ) > I 

 (τ) >  I 
 (τ) > I 

 (τ) when R  R < 2R . Thus, in 

each cell c,  Ẑ 
 (τ) is maximized by the policy ω that chooses the 

scheduling decisions in this preference order, choosing a less 
preferred decision only when none of the more preferred 
decisions are possible in that cell. 

By defining, Z (τ)  =  max   ẑ 
 (τ). Then using (4) and (5), 

we have: 
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   im
 → 

1

2  
∑∑  ( )

 

   

   

   

 

As Z (τ) can take only a finite number of values (namely R1, 
R2, 2R1, 2R2 and 0) and is a function of the current state of the 

ergodic user location processes, the time average of  Ẑ (τ) is 
exactly equal to its expectation with respect to the steady state 
user location distribution. Thus, the bound above can be 

computed by calculating the expectation of  Ẑ (τ) using the 
steady state probabilities associated with the indicator variables 
and summing over all cells. When R ≥ 2R , this is given by: 

 im
 → 

1

2  
∑∑  ( )

 

   

   

   

 

=
1

2 
∑ {  ( )}

 

   

 

=  
2      (   )  2   

    ( 
    )
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and when R  R < 2R , this is given by: 

 im
 → 

1

2  
∑∑  ( )

 

   

   

   

 

=
1

2 
∑ {  ( )}

 

   

 

= 
2    2   

      
     ( 

    )

2 
 

This establishes the necessary condition for the network 
capacity. 

Note that the above preference order clearly spells out the 
structure of the throughput optimal strategy. Specifically, 
depending on the values of R1 and R2, this order can be used to 
decide between same cell relay and adjacent cell direct 
transmission. We use this insight to design a throughput-
optimal 2-hop relay algorithm in the next section. Also note the 
factor of 2 with the decision variables corresponding to direct 
source-destination transmission. Intuitively, each such 
transmission opportunity is better than a similar opportunity 
between source-relay and relay-destination by a factor of 2 
since the indirect transmissions need twice as many 
opportunities to deliver a given number of packets to the 
destination as compared to direct transmissions.  

3.2 Proof of Sufficiency 

Now we present an algorithm that makes stationary, 
randomized scheduling decisions independent of the queue 
backlogs and show that it gives bounded delay for any rate 
λ <  μ, i.e., there exists a ‘ρ’ such that 0  ρ <  1 and λ = ρμ. 
We only consider the case when R ≥ 2R . The other case is 
similar and is not discussed. 

2-Hop Relay Algorithm. Every timeslot, for all cells, do the 
following: 
1). If there exists, a source-destination pair in the cell, 

randomly choose such a pair (uniformly over all such 
pairs in the cell). If the source has new packets for the 
destination, transmit at rate R1. Else remain idle. 

2). If there is no source-destination pair in the cell but 
there are at least 2 users in the cell, randomly designate 
one user as the sender and another as the receiver. 
Then, with probability 

   

 
 (where 0 <  δ <  1 and 

δ =  δ(ρ) to be determined later), perform the first 
action below. Else, perform the second. 

a) Send new Relay packets in same cell: If the transmitter 

has new packets for its destination, transmit at rate 

R1. Else remain idle. 

b) Send Relay packets to their Destination in same cell: If 

the transmitter has packets for the receiver, transmit 

at rate R1. Else remain idle. 
3). If there is only 1 user in the cell and its destination is 

present in one of the adjacent cells, transmit at rate R2 
if new packets present. Else remain idle. 

4). If there is only 1 user in the cell and its destination is 
not present in one of the adjacent cells but there is at 
least one user in an adjacent cell, randomly designate 
one such user as the receiver and the only user in the 
cell as the transmitter. Then, with probability 

   

 
  

(where 0 <  δ <  1 and δ =  δ(ρ) to be determined 
later), perform the first action below. Else, perform the 
second. 

a) Send new Relay packets in adjacent cell: If the 

transmitter has new packets for its destination, 

transmit at rate R2. Else remain idle. 

b) Send Relay packets to their Destination in 

adjacent cell: If the transmitter has packets for the 

receiver, transmit at rate R2. Else remain idle. 
This algorithm is motivated by the proof of necessity of 
Theorem 1 since it follows the same preference order in 
making scheduling decisions. Note that this algorithm 
restricts the path lengths of all packets to at most 2 hops 
because any packet that has been transmitted to a relay node 
is restricted from being transmitted to any other node except 
its destination. 

To analyze the performance of this algorithm, we make use 
of a Lyapunov drift analysis [7]. Consider a network of N 
queues operating in slotted time, and let 
 U(t) = {U (t), U (t), … . . , U (t)} represent the vector of 
backlogged packets in each of the queues at timeslot t. Let 

L(Û(t)) be a non-negative function of the unfinished work Û(t), 
called a Lyapunov function. By defining the conditional 
Lyapunov drift ∆(t, d) at time t > d (where d ≥  0 in a fixed 
integer) as follows: 

∆( ,  )   { ( ̂(  1))   ( ̂( )) | ̂(   )} 

Then we have the following: 
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Lemma 2. Lyapunov Drift Lemma: If there exists, a positive integer 

d such that for all timeslots t > d and for all  ̂( ), the conditional 
Lyapunov drift ∆( ,  ) satisfies: 

∆( ,  )     ∑  (   )

 

   

                        ( ) 

for some positive constants B and  , and if   { ( ̂( ))} < ∞, 
then the network is stable, and we have the following bound on the 
time average total queue backlog: 

 im
 → 

 u 
1

 
∑∑ {  ( )}  

 

 

 

   

   

   

                       ( ) 

Proof. This can be shown using a telescoping sum technique 
(similar to related proof in [7]) and is omitted for brevity. 

We now make use of this lemma to analyze the performance 
of the 2-Hop Relay Algorithm. 

Theorem 2. For the cell partitioned network (with N nodes and C 
cells) as described in “Network model” Section, with capacity 

  =
        

         
 

  
  and input rate   for each user such that 

  =  𝜌  for some 0   𝜌 <  1, and user mobility model as 

described in “Network model” section, the average packet delay �̅� 
under the 2-Hop Relay Algorithm satisfies: 

�̅�  
2  (2  1)

   (1  𝜌)
                             ( ) 

where B is a constant given by (11), ′ ′ is a positive constant given 

by  =
       

         
 

       
         

 , and d is a finite integer that is related to 

the mixing time of the joint user mobility process and is given by: 

 = ⌈
   (

    
1  𝜌

)

   (
1
 
)

⌉ 

Proof. Let U 
( )

(t) represent the total backlog of type ‘c’ (i.e., 

number of packets destined for node ‘c’) that are queued up 

in node ‘i’ at time t. The queueing dynamics of U 
( )

(t) 

satisfies the following for all c ≠  i: 

  
( )(  1)  max [  

( )( )  ∑   
( )( ), 0

 

]

 ∑   
( )( )  

 

  
( )( )                   ( ) 

where A 
( )(t)) = number of new type ‘c’ arrivals to source 

node ‘i’ at the beginning of timeslot t and μ  
( )(t) = rate 

offered to type ‘c’ packets in timeslot t with node a as 
transmitter and node ‘b’ as receiver. The above is an 
inequality because the actual number of packets transmitted 
from the other nodes to node ‘i’ (for relaying) could be less 

than the incoming transmission rate ∑ μ  
( )(t)  when these 

nodes do not have enough packets. Now define a Lyapunov 

function L (Û(t)) = ∑ ∑ (U 
( )(t))

 

   
 
   . Using (9), the 

conditional Lyapunov drift ∆(t, d) can be expressed as 
follows: 

∆( ,  )     2∑ ∑     
 
   {  

( )( )    

(∑    
( )( )  ∑    

( )( )     
( )( )) | ̂(   )}   (10) 

Here, B is given by: 

 = (         
  )

 
 (    

   )               (11) 

where  μ   
   = maximum transmission rate into any node = 

R1+JR2, where J is the maximum number of adjacent cells of 
any cell and μ    

   = maximum transmission rate out of any 
node = R1. 

We now use the following sample path relations to 
express (10) in terms of the queue backlog values at time (t - 
d). Specifically, we have the following for all t > d where d is 
a positive integer (to be determined later) for all i ≠  c. 

  
( )(   )   (         

  ) ≥   
( )( ) 

  
( )(   )   (    

   )    
( )( ) 

These follow by noting that the queue backlog at time t 
cannot be smaller than the queue backlog at time (t - d) 
minus the maximum possible departures in duration (t - d, 
d). Similarly, it cannot be larger than the queue backlog at 
time (t - d) plus the maximum possible arrivals in duration 
(t - d, d). Using these, we can express (10) in terms of the 

“delayed” queue backlogs U 
( )(t  d)) as follows: 

∆( ,  )    (2  1)  2∑ ∑   
( )(   )   

 
     

  {∑    
( )( )  ∑    

( )( )     
( )( )| ̂(   )}  (12) 

Let 𝒯 (t   d)  =  (χ⃗ (t   d), U⃗⃗ (t  d)) represent the 
composite system state at time (t - d) given by the user 
locations and queue backlogs. Since the 2-Hop Relay 
Algorithm makes control decisions only as a function of the 
current user locations, the resulting service rates are 
functional of the Markovian mobility processes. By the 
Markovian property of the χ⃗ (t   d) process, any functional 
of this also converge exponentially fast to their steady state 

values. Thus, using Lemma 1, when αγ  1 ∕ N , we have 
the following bounds: 

 {∑    
( )( ) | ̂(   )} ≥ (∑  ̅  

( )
 ) (1  2    )   (13) 

 {∑    
( )( ) | ̂(   )} ≥ (∑  ̅  

( )
 ) (1  2    ) (14) 

where μ̅  
( )

 and μ̅  
( )

 are the steady state service rates 

achieved by the 2-Hop Relay Algorithm. We now compute 
these values and use the inequalities (13), (14) to obtain a 
bound on (12). We have the following 2 cases: 
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Case 1. Node ‘i’ generates type ‘c’ packets: In this case, 

 A 
( )(t) = λ and ∑ μ̅  

( )
 = 0 (since under the 2- Hop Relay 

Algorithm, a source node would never get back a packet 

that it generates). To calculate ∑ μ̅  
( )

 , we note that the 

outgoing service rate for packets generated by the source is 
equal to the sum of the rate at which the source is scheduled 
to transmit directly to its destination and the rate at which it 
is scheduled to transmit type c packets to any of the relay 
nodes. Let these rates be r1 and r2 respectively. Also let the 
transmission rate at which it is scheduled to transmit relay 
packets to their destinations be r3. Since the 2-Hop Relay 
Algorithm only schedules transmissions of these types, the 
total rate of transmissions over the network is given by N (r1 
+ r2 + r3). Using the probability of choosing source-relay 

and relay-destination transmissions, we have: r = 
   

   
r . In 

the 2-Hop Relay Algorithm, a direct source-to-destination 
transmission is scheduled whenever there is a source 
destination pair in the same cell or there is only 1 node in a 
cell and its destination is in an adjacent cell (and 
independent of the actual queue backlog values). Thus, 
using the definitions of q and q0 from the statement of 
Theorem 1, we have: Nr = C(R q  R q

 ). Similarly, the 
sum total transmissions in the network can be expressed in 
terms of the quantities p and    as follows:  

  (         )  =   (       
 ). 

Using these to solve for r1, r2, r3 and simplifying, we have: 

  =  (1   ),   =   (1   ),   =   (1   )  (1 ) 

where κ  
       

         
 

       
         

 . Note that 0 < κ < 1 (since  >

q and   > q ). Therefore, we have: 

∑ ̅  
( )

 

=      =       

Let δ =
   

 
 and αγ =

 

   =
   

    . Note that this choice of δ 

represents a valid probability since 0  ρ <  1. Then, using 
(13), the last term of (12) under this case can be expressed as: 

 {∑    
( )( )  ∑    

( )( )     
( )( )| ̂(   )}  

≥ (∑  ̅  
( )

 ) (1  2    )   = (     ) (1  
 

 
)  𝜌   

≥  [(1   )  𝜌] ≥  (1  2  𝜌) =
 (   )

 
  

where we used the fact that (1    ) (1  
 

 
) ≥ (1   )2. 

Case 2. Node i relays type c packets: Note that N > 2 for this 
case to happen. From our traffic model, we know that in this 

case A 
( )(t) = 0 for all t. Further, under the 2-Hop Relay 

Algorithm, μ  
( )(t) > 0 only if node ‘a’ is the source for type c 

packets. Also μ  
( )(t) > 0 only if b = c. To compute ∑ μ̅  

( )
  

and ∑ μ̅  
( )

  for this case, note that the 2-Hop Relay 

Algorithm schedules relay transmissions such that all (N-2) 
relay packet types are equally likely. Thus we have: 

∑  ̅  
( )

 =
  

   
, ∑  ̅  

( )
 =

  

   
  

Let  =
   

 
 and    =

 

   =
   

    . Then, using (13), (14), 

the last term of (12) under this case can be expressed as: 

 {∑    
( )( )  ∑    

( )( )     
( )( )| ̂(   )}  

≥ (∑  ̅  
( )

 ) (1  2    )  (∑  ̅  
( )

 ) (1  2    )  

= (∑  ̅  
( )

  ∑  ̅  
( )

 )  (∑  ̅  
( )

  ∑  ̅  
( )

 )
 

 
  

=
(     ) 

(     ) 

 

   
=

    

   
(1  

 

 
) ≥

  (   )

  
  

where, we used (15). Combining these two cases, with  =
   

 
 and    =

   

   : 

 {∑    
( )( )  ∑    

( )( )     
( )( )| ̂(   )} ≥

  (   )

  
  

Using this in (12), we get: 

∆( ,  )    (2  1)  
  (1  𝜌)

4 
∑∑  

( )(   )

   

 

   

 

This is in a form that fits (6). Using the Lyapunov Drift 
Lemma, we get 

 im
 → 

 u 
1

 
∑∑ {  ( )}

   

   

   

 
2   (2  1)

  (1  𝜌)
      (1 ) 

The total input rate into the network is Nλ. Thus, using 
Little’s Theorem, the average delay per packet is bounded 

by 
   (    )

   (   )
. 

3.3 Discussion and Simulation Example: 

The proof of the capacity for the cell-partitioned network can 
be used to consider more general scheduling restrictions. From 
(5), it amounts to: 

  
1

2 
 {max

   
∑(  

 ( )     , 
 ( )     , 

 ( ))

 

   

} 

If the bound on the right hand side can be achieved by any 
policy (potentially randomized) that takes decisions only as a 
function of the current network state, then we can design a 
deterministic policy that is throughput optimal by scheduling 

to maximize ∑ (Y 
 (t)  X  , 

 (t)  X  , 
 (t)) 

    subject to the 

network restrictions. For the specific cell-partitioned model 
considered here, this maximization is achieved by following the 
preference order of the decision variables in each cell separately 
as described earlier. This enables us to exactly compute the 
capacity of the network. It is possible to do the same for 
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extensions to this model involving other constraints. For 
example, under the constraint that a user cannot 
simultaneously transmit and receive, the above maximization 
becomes a maximum-weight match problem. Similarly, one 
could allow more than one transmitter per cell, in which case 
we would need to define more indicator decision variables for 
all possible control options. 

We next consider an example network consisting of 20 nodes 
and 16 cells as shown in Fig. 1. The nodes move from one cell to 
another independently according to a Markovian random walk. 
Specifically, at the end of every slot, a node stays in its current 
cell with probability (1 - x), else it decides to move randomly 
one step in either the North, West, South, or East directions 
with probability x. If there is no feasible adjacent cell, then the 
user remains in the current cell. It can be shown that the 
resulting steady state location distribution is uniform over all 

cells for all 0   x <  1. Thus, π =
 

  
 for all cells ‘c’. Next we 

assume that R1 = 2 and R2 = 1 packets/slot. Then using 
Theorem 1, the capacity for this network is given by μ =
       

         
 

  
 and can be calculated exactly. Specifically, we 

get p = 0.358; q = 0.038;    = 0.357;  q  = 0.073 and the network 
capacity is given by μ =  0: 4    acket /  ot. 

 

Fig. 2. Average packet delay under the 2-Hop Relay Algorithm in a 
network of 16 cells with 20 nodes for different mixing times of the mobility 
process. 

We next simulate the 2-Hop Relay Algorithm on this 
network. New packets arrive at each source node according to 
independent Bernoulli processes, so that a single packet arrives 
i.i.d. with probability λ every slot. In Fig. 2, we plot the average 
packet delay vs. λ for different values of x. We also plot the 
analytical bound (8) of Theorem 2 for the i.i.d. mobility case (for 
which d = 0). It can be seen that the average delay goes to 
infinity as λ is pushed closer to the capacity μ =  0.4    acket /

  ot (shown by the vertical line in Fig. 2). While the network 
capacity is the same for all values of x (since x does not affect 
the steady state location distribution), the average delay 
increases as x becomes smaller. This is because a smaller x 
implies a larger value for the parameter d leading to larger 
delay as suggested by the delay bound (8) in Theorem 2. Thus, 

the 2-Hop Relay Algorithm is able to support all input rates 
within the network capacity with finite average delay. 
However, its delay performance is not necessarily the best. For 
example, when the input rate is small (say λ =  0.1  acket /

  ot), the average delay is more than 100 slots. Note that the 2-
Hop Relay Algorithm makes scheduling decisions purely based 
on the current user locations and restricts all packets to at most 
2 hops. It does not attempt to optimize the delay in the 
network. The delay performance may be improved using 
alternative scheduling strategies that do not restrict packets to 
at most 2 hops. For example, backlog aware scheduling and 
routing (e.g., [7]) or schemes that exploit the mobility pattern of 
the users (e.g., [15]) may offer better delay performance. 

4 MINIMUM ENERGY FUNCTION 

We now investigate the minimum energy function of the cell-
partitioned network under consideration. Recall that in our 
network model, each user either uses zero power or full power. 
Further, R1 (R2) packets can be transmitted from the sender to 
the receiver in the same (adjacent) cell if the sender uses full 
power. 

The minimum energy function Φ(λ) is defined as the 
minimum time average energy required to stabilize an input 
rate λ  per user, considering all possible scheduling and routing 
algorithms that conform to the given network structure. We 
exactly compute this function for our network model. 
Specifically, we assume that all users receive packets at the 
same rate (i. e. , λ  =  λ  or a   i). Also, we consider the case when 
R  ≥  2R  (Φ(λ)) for the case when R  <  2R  has a different 
expression, but the proof is similar). 

Theorem 3. The minimum energy function 𝛷( ) per user for the 
cell-partitioned network as described in Sec. II with    ≥  2   is a 
piecewise linear curve given by the following: 

Φ( ) =

{
 
 
 
 

 
 
 
 

 

  
                                                                     i    
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    and 
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Thus, the network can stably support users simultaneously 
communicating at any rate λ < μ with an energy cost that can 
be pushed arbitrarily close to Φ(λ) (at the cost of increased 
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delay). We prove the theorem in 2 parts. First, we establish the 
necessary condition by deriving a lower bound on the energy 
cost of any stabilizing algorithm. Then, we establish sufficiency 
by presenting a specific scheduling policy and showing that the 
average delay is bounded under that policy. 

4.1 Proof of Necessity 

Consider any scheduling strategy that stabilizes the system. 
Let X  (T) denote the number of packets delivered by the 
strategy from sources to destinations in time interval (0, T) that 
involves exactly ‘a’ same cell and ‘b’ adjacent cell transmissions. 
For simplicity, assume that the strategy is ergodic and yields 
well defined time average energy expenditure per user e̅ and 
well defined time average values for x   where:  

     im
 → 

   ( )

 
                                  (1 ) 

The average energy cost per user e̅ of this policy satisfies: 

�̅� ≥ ∑(
 

  
 

 

  
)

 , 

   

 
                          (1 ) 

This follows by noting that enough packets may not be 
available during a transmission. 

Note that x  =  0, and so the only possible non-zero x   
variables are for (a, b) pairs that are integers, non-negative, and 
such that (a, b)  ≠  (0, 0). Let x = (x  ) represent the collection 
of x   variables, and note that these variables must satisfy the 
constraint x ∈ Ω ∩ Ω ∩ Ω ∩ Ω , where the four constraint sets 
are defined below: 

Ω  { | ∑    =   
( , ) ( , )

} ;    Ω  { |
   

  
   } ; 

Ω  { |
1

  
∑          
 

} 

Ω  { |
1

  
∑     

   

  
         

 

} 

where c1 is the maximum rate of source-destination 
transmission opportunities in the same cell, c1 + c2 is the 
maximum rate of all possible same cell transmission 
opportunities and c1 + c2 + c3 is the maximum rate of all same 
cell or source-destination adjacent cell transmission 
opportunities. Here, these quantities are summed over all cells. 
Using the definitions of p, q and q  from the statement of 
Theorem 1, we know that c  =  C , c  c = C ;  c  c  

c  =  C(  q ). For example, (c  c  c ) can be written as 
  

 
 ∑ (X (t)    X (t)  X (t))

 
    where X (t) is the maximum 

number of direct same cell opportunities, X (t) is the maximum 
number of indirect same cell opportunities given all direct 
opportunities are used and X (t) is the maximum number of 
direct adjacent cell opportunities given all same cell 
opportunities are used. Since only one of these three 

opportunities can used is a given cell in a timeslot, the 
maximum total sum is fixed and hence 

         =   (    ). 

Let  (x)  ∑ (
 

  
 

 

  
)

   

 
  ,  in (18). Because e̅  ≥   (x), and 

because x ∈ Ω ∩ Ω ∩ Ω ∩ Ω , we have: 

�̅�  ≥ in 
  ∈  ∩  ∩  ∩  

𝑓( )                       (1 ) 

Furthermore, for any function g(x) such that g(x)     (x) for all 

‘x’ and for any set Ω̃ that contains the set Ω ∩ Ω ∩ Ω ∩ Ω , we 
have: 

�̅�  ≥ in 
  ∈ ̃

 ( )                                    (20) 

This follows because the function to be minimized is smaller, 
and the INFIMUM is taken over a less restrictive set. We now 

define four new constraint sets Ω̃ , Ω̃ , Ω̃ , Ω̃  as follows: 

Ω̃  Ω ;    Ω̃   Ω ; 

Ω̃  { |
   

  
 

2

  
∑         
   

} ; 

Ω̃  { |
   

  
 

2

  
∑    

   

  
         

   

} ; 

It can be seen that each of  Ω , Ω , Ω , Ω  is a subset 

of  Ω̃ , Ω̃ , Ω̃ , Ω̃  . Therefore,  Ω ∩ Ω ∩ Ω ∩ Ω  it is a subset 

of  Ω̃ ∩ Ω̃ ∩ Ω̃ ∩ Ω̃  . Note that since 
 

  
 

 

  
, we have the 

following: 

1

  
<

2

  
 

1

  
<

2

  
                         (21) 

We now compute four different bounds for e̅, each having the 
form e̅ ≥ αλ  β. These bounds define the four piecewise linear 
regions of Φ(λ). 

1). First note that  (x) ≥
 

  
∑

   

  , . This follows from the 
definition of f(x). Therefore taking g(x) ≥

 

  
∑

   

  ,  , we 
have: 

�̅�  ≥ in 
  ∈ ̃ 

1

  
∑

   

  , 
 

Because Ω̃  is given by ∑ x  = Nλ , , the above infimum 

is equal to λ/R  . Thus, we have our first linear 
constraint for any algorithm that yields a time average 
energy of e̅: 

�̅� ≥
 

  
                                  (22) 

2). Next note that  (x) ≥
   

   
 

 

  
∑

   

 
 , 

( , ) ( , )

. This is 
because 

 

  
 

 

  
≥

 

  
 for any non-negative integer pair 

(a, b) such that (a, b) ≠ {(0,0), (1,0)} (using (21)). 
Therefore, taking this lower bound of ‘f(x)’ and ‘g(x)’, 
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we have: 

�̅� ≥ in 
  ∈  ̃ ∩ ̃ 

[
   

   
 

2

  
∑

   

  , 
( , ) ( , )

] 

The right hand side is equal to the solution of the 
following: 

 inimi e:           
   

   
 

2

  
∑

   

  , 
( , ) ( , )

 

 ubject to:          ∑    =   
 , 

 

   

  
    

The above optimization is equivalent to minimizing 
   

   
 

 

  
(Nλ  x  ) subject to  

   

  
 c . 

The solution is clearly to choose x  = R c , and hence 
we have: 

�̅� ≥
2 

  
 

  
 

=
 

 
 

2

  
(  

2   

2 
)                    (23) 

3). Next we have  (x) ≥
   

   
 

 

  
∑

   

 
 

 

  
∑

   

 
 , 
   

    
which follows from the definition of  (x) and because 
 

  
 

 

  
for all positive b ≥  1. Thus, taking this lower 

bound of  (x)  as g(x), we have: 

�̅� ≥ in 
  ∈  ̃ ∩ ̃ ∩  ̃ 

[
   

   
 

2

  
∑

   

 
 

1

  
∑

   

  , 
   

   
] 

This is equivalent to the following minimization: 

 inimize:          
   

   

 
2

   
∑    

   

 
1

   
(       ∑    

   
) 

 ubject to:          
   

  
    

 
   

  
 

2

  
∑    

   
       

where, we have aggregated the constraint ∑ x  = Nλ ,  

into the objective. The coefficients multiplying x10 and 
∑ x      are both negative, so that the above 
optimization is solved when x   2∑ x  =   

R (c  c ). Similarly, it can be shown that above 
optimization is solved when  x  = R c .These yields: 

�̅� ≥
 

  
 

(     )

 
 

  

   
(   

  
2
) 

 =
 

 
 

1

  
(  

  (   )

2 
)                          (24) 

4). Finally note that  (x) ≥
   

   
 

 

  
∑

   

 
 

   

   
    

 

  
∑

   

     which follows from the definition of  (x) as 
well as because 

 

  
 

 

  
 for all b ≥  2. Taking this lower 

bound of  (x)  as g(x), we have: 

�̅� ≥ in 
  ∈ ̃

[
   

   
 

2

  
∑

   

 
 

   

   
 

2

  
∑

   

       
] 

where   Ω̃ = Ω̃ ∩ Ω̃ ∩ Ω̃ ∩ Ω̃  , this is equivalent to the 
following minimization (Using ∑ x  = Nλ ,  ): 

 inimize:          
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(       ∑        

   
) 
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Letting  = ∑ x      and simplifying the optimization 
metric, the above optimization is equivalent to 
following: 

 inimize:          
   

 
(
1

  
 

2

  
)  

 

 
(
2

  
 

2

  
)  
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 ubject to:          
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The above optimization is solved when  x  = R c , 
 x   2 = R (c  c ) and  x  = R c . Thus have: 

�̅� ≥
2 

  
 

(     )

 
 

  

   

(2     )  
  
 

 

=
    

 
 

2

  
(  

  (   )  2   
 

2 
)               (2 ) 

The necessary sets of conditions for the function Φ(λ) 
are obtained by combining these four bounds. 

 

4.2 Proof of Sufficiency 

 Now we present an algorithm that makes stationary, 
randomized scheduling decisions independent of the actual 
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queue backlog values and show that for any feasible input rate 
λ < μ, its average energy cost can be pushed arbitrarily close to 
the minimum value Φ(λ) with bounded delay. However, the 
delay bound grows asymptotically as the average energy is 
pushed closer to the minimum value. Similar to the capacity 
achieving 2-Hop Relay Algorithm, this algorithm also restricts 
packets to at most 2 hops. However, the difference lies in that it 
greedily chooses transmission opportunities involving smaller 
energy cost over other higher cost opportunities. An 
opportunity with higher cost is used only when the given input 
rate cannot be supported using all of the low cost opportunities. 
Thus, depending on the input rate λ, the algorithm uses only a 
subset of the transmission opportunities as follows. 

1) If 0  λ <  
     

  
, all packets are sent using only 

sourcedestination transmission opportunities in the 
same cell. 

2) If  
     

  
 λ <

  (   ) 

  
 , all packets are sent either using 

source-destination transmission opportunities in the 
same cell or source-relay and relay-destination 
transmission opportunities in the same cell. 

3) If  
  (   ) 

  
 λ <

  (   )     
  

  
, all packets are sent using 

same cell transmissions (in either direct transmission 
or relay modes), or adjacent cell source-destination 
transmission opportunities. 

4) And finally, when  
  (   )     

  

  
 λ < μ, all transmission 

opportunities that restrict packets to at most 2 hops are 
used. 

To make the presentation simpler, in the following, we only 

discuss the case where  
    

  
 λ <

  (   ) 

  
. The basic idea and 

performance analysis for the other cases are similar.  

Let λ =
    

  
 ρ

  (   ) 

  
 where, 0 <  ρ <  1 this is a given 

constant. Also define a control parameter β (where 1 <  β <
 1 ∕ ρ) that is input to the algorithm. This parameter affects an 
energy-delay tradeoff as shown in Theorem 4. 

Minimum Energy Algorithm. Every timeslot, for all cells, do 
the following: 

1) If there exists, a source-destination pair in the cell, 
randomly choose such a pair (uniformly over all such 
pairs in the cell). If the source has new packets for the 
destination, transmit at rate R1. Else remain idle. 

2) If there is no source-destination pair in the cell but there 
are at least 2 users in the cell, then with probability βρ, 
decide to use the same cell relay transmission 
opportunity as described in the next step. Else remain 
idle. 

3) If decide to use the same cell relay transmission 
opportunity in step (2), randomly designate one user 
as the sender and another as the receiver. Then with 
probability 

   

 
 (where 0 <  δ <  1 and δ = δ(β) to be 

determined later) perform the first action below. Else, 
perform the second. 

a) Send new Relay packets in same cell: If the 

transmitter has new packets for its destination, 

transmit at rate R1. Else remain idle. 

b) Send Relay packets to their Destination in same 

cell: If the transmitter has packets for the receiver, 

transmit at rate R1. Else remain idle. 

Note that the above algorithm does not use any adjacent cell 
transmission opportunities. All packets are sent over at most 2 
hops using only same cell transmissions. We now analyze the 
performance of this algorithm. 

Theorem 4. For the cell partitioned network (with N nodes and C 
cells) as described in Section of “Network model”, with minimum 
energy function 𝛷( ) as described above, and user mobility model 
as described in Section of “Network model”, the average energy 
cost e of the Minimum Energy Algorithm with input rates   for 

each user such that  =
    

  
 𝜌

  (   ) 

  
 (where 0 <  𝜌 <  1) and 

a control parameter 𝛽 (where 1 <  𝛽 <  1 ∕ 𝜌) satisfies: 

�̅� = 𝛷( )  (𝛽  1)𝜌 (
   

 
)                  (2 ) 

And the average packet delay �̅� satisfies: 

�̅�  
4   (2  1)

   (   )𝜌(𝛽  1)
                      (2 ) 

where B is a constant given by (11) and d is a finite integer that is 
related to the mixing time of the joint user mobility process is 
given by 

 = [
   (

4  (   ) 𝛽
(   )𝜌(𝛽  1)

)

   (1 ∕  )
] 

From the above, it can be seen that the control parameter β 
allows a (O(β  1), O(1 ∕ (β  1))) tradeoff between the 
average energy cost and the average delay bound. Specifically, 
the average energy cost e̅ can be pushed arbitrarily close to 
Φ(λ)  by pushing β closer to 1. However, this increases the 
bound on D̅ as 1 (β  1)⁄ . 

5 CAPACITY GAINS BY NETWORK CODING 

Here, we show an example where the network capacity can 
be strictly improved by making use of network coding in 
conjunction with the wireless broadcast advantage. Specifically, 
consider a network with 6 nodes and 4 cells. Suppose the 
steady state location distribution for all nodes is uniform over 
all cells. Thus, π  = 1/4 for all c. The one-to-one traffic pairing is 
given by 1 ↔  2;  3 ↔  4;    ↔   . Let R1 = 1 and R2 = 0. Thus, 
this example only allows same cell transmissions. We further 
assume that when a node in a cell transmits, all other nodes in 
that cell receive that packet. Note that the 2-Hop Relay 
Algorithm presented in section of “Network capacity” does not 
make use of this feature. 

Using Theorem 1, the network capacity under the model 
presented in section of “Network model” can be computed. 
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Specifically, the network capacity is given by μ =
   

  
 

packets/slot per node where θ =
 

 
 and using (2), we have 

q = 1  (1  
 

  
)
 

and  = 1  (1  
 

 
)
 

 
 

 
(1  

 

 
)
 

. 

We now show how network coding can be used to achieve a 
throughput that is strictly higher than μ. First we define 4 
distinct configurations of the nodes. In configuration I, nodes 1, 
4 and 5 are in the same cell and the other nodes can be in any of 
the remaining cells (but not in the same cell as nodes 1, 4 and 5). 
Note that this cell can be any one of the 4 cells. From the 
assumption about the node mobility process, the steady state 

probability of configuration-I is given by υ  4  (
 

 
)
 

 (
 

 
)
 

. 

In configuration-II, nodes 2, 3 and 5 are in the same cell and the 
other nodes can be in any of the remaining cells (but not in the 
same cell as nodes 2, 3 and 5). In configuration-III, nodes 2, 4 
and 5 are in the same cell and the other nodes can be in any of 
the remaining cells (but not in the same cell as nodes 2, 4 and 5). 
Finally, in configuration-IV, nodes 1, 3 and 5 are in the same cell 
and the other nodes could be in any of the remaining cells (but 
not in the same cell as nodes 1, 3 and 5). Note that these 
configurations cannot occur simultaneously as each consists of 
node 5. Further, the steady state probability of each 
configuration is given by υ. 

In the following, we will modify the 2-Hop Relay Algorithm 
of Sec. III-B when one of these  configurations occur in any cell 
and demonstrate an improvement in the throughput of nodes 1, 
2, 3 and 4 over μ. For each configuration, we will only focus on 
the transmissions in the cell with the three nodes that define 
that configuration. The 2-Hop Relay Algorithm for the other 
cells remains the same. 

Note that under each configuration, there are no source-
destination pairs in the cell of interest. Thus, under the 2-Hop 
Relay Algorithm, a node is selected as the transmitter with 
probability 1/3 while the remaining two nodes are equally 
likely to be selected as the receiver. Further, the transmitter is 
scheduled to transmit a new packet to the receiver with 

probability  
   

 
 and is scheduled to transmit a relay packet to 

the receiver with probability 
   

 
. Then, in each configuration, 

the two nodes other than node 5 are scheduled to transmit a 

new packet to node 5 with probability 
 

 
  

 

 
  

   

 
=

   

  
. Also, 

in each configuration, node 5 is scheduled to transmit a relay 
packet to each of the other two nodes in the cell with 

probability  
 

 
  

 

 
  

   

 
=

   

  
.  

We now modify the 2-Hop Relay Algorithm to take 
advantage of network coding. For all configurations other than 
the four as defined above, the algorithm remains the same. 
However, in each of the configurations-I, II, III and IV, we 
change the probability of scheduling a node to transmit a new 

packet (for relaying) to node 5 from 
   

  
 to  

 

 
  

   

 
=

   

 
 where 0 

< ϵ < 1. Also, node 5 is scheduled to transmit a relay packet to 

the other two nodes in the cell with probability  
 

 
  

    

 
=

    

 
 . 

However, whenever node 5 has at least one packet for each of 
the two other nodes, it broadcasts a XOR of two packets 

destined for these nodes in a single transmission. If node 5 does 
not have at least one packet for each of the two other nodes, it 
would simply transmit a regular packet (if available). The 
probabilities associated with the other scheduling decisions 
under this modified algorithm remain the same as the original 
2-Hop Relay Algorithm. It can be seen that the probabilities 
under the modified algorithm add to 1. 

 
Fig. 3. An example showing capacity gains possible by using network 
coding in conjunction with the wireless broadcast advantage. 

To see how the nodes can recover the original packets from 
the XOR packet, we further classify each configuration into type 
A, B and C depending on the scheduling decision as shown in 
Fig. 3. The configurations of type A and B correspond to the 
scheduling decisions in which a node is scheduled to transmit a 
new packet (for relaying) to node 5. The configurations of type 
C correspond to the scheduling decisions in which node 5 is 
scheduled to transmit relay packets to the other two nodes 
(either as a network coded XOR packet whenever possible or a 
regular packet). In each configuration of type A or B, whenever 
a new packet is transmitted by a node to node 5 for relaying, 
the other node overhears the packet and stores a copy. Figure I-
A shows, when node 1 transmits a new packet (destined for 
node 2) to node 5, node 4 overhears this transmission and stores 
a copy of this packet. Similarly, in II-A, when node 3 transmits a 
new packet (destined for node 4) to node 5, node 2 overhears 
this transmission and stores a copy of this packet. In each 
configuration of type C, whenever node 5 has at least one 
packet for each of the two other nodes, note that each of these 
two nodes already has a copy of the packet destined for the 
other node (that it obtained by overhearing earlier in a type A 
or B configuration). Therefore, when node 5 transmits a XOR 
packet, both of these nodes can recover the original packets 
destined for them by using the side information already 
available to them in the form of previously overheard and 
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stored packets. Figure III-C shows, node 5 is in the same cell as 
nodes 2 and 4 and suppose it has a packet for each of them. 
Then, node 2 must have the packet that is destined for node 4 
that it overheard in II-A. Similarly, node 4 must have the packet 
that is destined for node 2 that it overheard in I-A. Thus, when 
node 5 broadcasts a XOR packet in a single transmission, both 
nodes 2 and 4 can retrieve their desired packets. Thus, this 
single transmission effectively delivers two packets. Note that 
under a scheme that does not allow mixing of packets, at most 
one packet can be transmitted per transmission. 

 

Fig. 4. Additional relay queues at node 5 under the network coding 
enhanced 2-Hop Relay Algorithm that is used in configurations -I, II, III 
and IV. 

To demonstrate gains in throughput under this “network 
coding enhanced” 2-Hop Relay Algorithm, we define the 
following additional relay queues at node 5 as shown in Figure. 
4. Arrivals to and departures from these queues happen only 
when scheduling decisions corresponding to the 12 
configurations in Fig. 3 are made according to the enhanced 2-
Hop Relay Algorithm. U   

( )
(t)  & U   

( )
(t)  refer to the queue of 

packets destined for nodes i and j respectively that will be 
network coded whenever possible. Fig. 4 shows the arrival rates 
and the corresponding configurations (when arrivals happen to 
these queues) as well as the service rates and corresponding 
configurations (when packets are served from these queues). 
Note that each queue has an arrival rate of  

(   ) 

 
 and sees a 

service rate of 
(    ) 

 
 . Since (1  2ϵ) > (1  ϵ), all these queues 

are stable. The additional throughput for nodes 1, 2, 3 and 4 
over the 2-Hop Relay Algorithm without network coding is 
given by [

 (   )

 
 

 (   )

  
] υ  packets/slot. This is strictly positive 

for any 0 < ϵ < 1/ 4. For example, by choosing ϵ = 1/8, a 
throughput gain of 

 

  
 packets/slot is achievable. Thus, the 

capacity can be strictly increased over a scheme that is 
restricted to pure routing.  

6 CONCLUSION 

In this work, we investigated two quantities of fundamental 
interest in a delay-tolerant mobile ad hoc network: the network 
capacity and the minimum energy function. Using a cell-
partitioned model of the network, we obtained exact 
expressions for both these quantities in terms of the network 
parameters (number of nodes N and number of cells C) and the 
steady state location distribution of the mobility process. Our 
results hold for general mobility processes (possibly non-
uniform and non-i.i.d.) and our analytical technique can be 
extended to other models with additional scheduling 
constraints. 

We also proposed two simple scheduling strategies that can 
achieve these bounds arbitrarily closely at the cost of an 
increased delay. Both these schemes restrict packets to at most 2 
hops and make scheduling decisions purely based on the 
current user locations and independent of the actual queue 
backlogs. For both schemes, we computed bounds on the 
average packet delay using a Lyapunov drift technique. 

In this paper, we have focused on network control 
algorithms that operate according to the network structure as 
presented in section of “Network model”. We assumed that the 
packets themselves are kept intact and are not combined or 
network coded. As shown in the example in section of 
“Capacity gain by network coding”, it is possible to increase the 
network capacity by making use of network coding and the 
wireless broadcast feature. An interesting future direction of 
this research is to determine the exact capacity region with such 
enhanced control options. 
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